Microscopic derivation of the Bohr-Mottelson collective Hamiltonian and its application to quadrupole shape dynamics

2016 
We discuss the nature of the low-frequency quadrupole vibrations from small-amplitude to large-amplitude regimes. We consider full five-dimensional quadrupole dynamics including three-dimensional rotations restoring the broken symmetries as well as axially symmetric and asymmetric shape fluctuations. Assuming that the time-evolution of the self-consistent mean field is determined by five pairs of collective coordinates and collective momenta, we microscopically derive the collective Hamiltonian of Bohr and Mottelson, which describes low-frequency quadrupole dynamics. We show that the five-dimensional collective Schr\"odinger equation is capable of describing large-amplitude quadrupole shape dynamics seen as shape coexistence/mixing phenomena. We summarize the modern concepts of microscopic theory of large-amplitude collective motion, which is underlying the microscopic derivation of the Bohr-Mottelson collective Hamiltonian.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    221
    References
    11
    Citations
    NaN
    KQI
    []