Effect of erbium doping on phase composition, mechanical and thermal properties of ZrO2-based ceramics

2021 
Abstract ErxTi0.1Zr0.9–xO2–1.5x (x = 0.04, 0.05, 0.06, 0.07, 0.08) ceramics were synthesized by a solid-state reaction method. The influence of the Er3+ addition on the phase composition, Vickers hardness, fracture toughness, and thermal conductivity of this ceramic material was investigated. The X-ray diffraction results reveal that the c-ZrO2 content increases from 1.85 vol% to 33.89 vol%, and the percentage of t-ZrO2 decreases from 98.15 vol% to 66.11 vol% with the increase in Er3+ from 4 mol% to 8 mol%. Moreover, the addition of Er3+ is beneficial for the volume expansion of the unit cell. At the same time, the incorporation of Er3+ weakens the coordination of oxygen ions around the metal cations, resulting in a corresponding decrease in the tetragonality of the t-ZrO2. The Vickers hardness and fracture toughness of the ErxTi0.1Zr0.9–xO2–1.5x ceramics show increasing and decreasing trends, respectively. The thermal conductivity has a significant decline due to point defects caused by the Er3+ doping. The 8ETZ ceramic exhibits the highest Vickers hardness (12.7 GPa), lowest fracture toughness (7.6 MPa/m1/2), and lowest average thermal conductivity (1.85 W/(m·K)) in the range of 200 to 1000 °C. All of the above properties are higher than those of the Y2O3-stabilized ZrO2 ceramic.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []