Tidal Fluctuation Influenced Physicochemical Parameter Dynamics in Coastal Groundwater Mixing Zone

2018 
Tidal fluctuation could modify the physicochemical parameters in coastal groundwater mixing zone (CGMZ) notably, which in turn largely impacts on the reactive transport, discharge, and cycling of carbon, nutrients, trace metals, and other dissolved constituents. In this study, to capture the dynamic of groundwater physicochemical parameters (e.g., salinity, dissolved oxygen, pH, temperature, and oxidation/reduction potential) under the effect of tidal fluctuation, in situ measurement of groundwater is conducted along a 2D transection at different tidal stages. The results demonstrate visible periodic variations of parameters like salinity, temperature, DO, and pH, while the groundwater pH oscillation displays a phase lag behind the tidal fluctuation. Furthermore, the salinity variation at the near-surface area is mainly controlled by the mixing process between the infiltrated seawater and groundwater. Barring the mixing process, the groundwater temperature at the near-surface area is also affected by day and night air temperature difference. Meanwhile, the depleting DO and declining pH indicate that the biodegradation via aerobic respiration is highly active in CGMZ and acts as one of the major impact factors for the DO dynamic. The sharp contrast between the high removal rate of DO (7.25 mmol m−3 day−1) and relatively low production rate of H+ (9.38 μmol m−3 day−1) demonstrates the existence of the processes consuming H+ and DO besides aerobic respiration such as dissolution of carbonates, and respiration of microorganism and mangrove roots. Moreover, owing to the mixing process, the salinity transition zone overlaps with the oxidization/reduction potential transition zone. The enrichment of Fe2+ and Mn2+ could well explain the highly reducing saline groundwater observed in this study. In a nutshell, all physicochemical parameters are sensitive to tidal fluctuation, which provides implication for further study on the variation of biogeochemical process in CGMZ.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    16
    Citations
    NaN
    KQI
    []