Simulation of Secondary Electron and Backscattered Electron Emission in A6 Relativistic Magnetron Driven by Different Cathode

2015 
Prticle-in-cell (PIC) simulations demonstrated that, when the relativistic magnetron with diffraction output (MDO) is applied with a 410 kV voltage pulse, or when the relativistic magnetron with radial output is applied with a 350 kV voltage pulse, electrons emitted from the cathode with high energy will strike the anode block wall. The emitted secondary electrons and backscattered electrons affect the interaction between electrons and RF fields induced by the operating modes, which decreases the output power in the radial output relativistic magnetron by about 15% (10% for the axial output relativistic magnetron), decreases the anode current by about 5% (5% for the axial output relativistic magnetron), and leads to a decrease of electronic efficiency by 8% (6% for the axial output relativistic magnetron). The peak value of the current formed by secondary and backscattered current equals nearly half of the amplitude of the anode current, which may help the growth of parasitic modes when the applied magnetic field is near the critical magnetic field separating neighboring modes. Thus, mode competition becomes more serious.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    2
    Citations
    NaN
    KQI
    []