Possible association of the western Tibetan Plateau snow cover with the decadal to interdecadal variations of northern China heatwave frequency

2012 
Northern China has been subject to increased heatwave frequency (HWF) in recent decades, which deteriorates the local droughts and desertification. More than half a billion people face drinking water shortages and worsening ecological environment. In this study, the variability in the western Tibetan Plateau snow cover (TPSC) is observed to have an intimate linkage with the first empirical orthogonal function mode of the summer HWF across China. This distinct leading mode is dominated by the decadal to inter-decadal variability and features a mono-sign pattern with the extreme value center prevailing over northern China and high pressure anomalies at mid- and upper troposphere over Mongolia and the adjacent regions. A simplified general circulation model is utilized to examine the possible physical mechanism. A reduced TPSC anomaly can induce a positive geopotential height anomaly at the mid- and upper troposphere and subsequently enhance the climatological high pressure ridge over Mongolia and the adjacent regions. The subsidence associated with the high pressure anomalies tends to suppress the local cloud formation, which increases the net radiation budget, heats the surface, and favors more heatwaves. On the other hand, the surface heating can excite high pressure anomalies at mid- and upper troposphere. The latter further strengthens the upper troposphere high pressure anomalies over Mongolia and the adjacent regions. Through such positive feedback effect, the TPSC is tied to the interdecadal variations of the northern China HWF.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    78
    Citations
    NaN
    KQI
    []