Improving Quantitative Rainfall Prediction Using Ensemble Analogues in the Tropics: Case study of Uganda

2017 
Accurate and timely rainfall prediction enhances productivity and can aid proper planning in sectors such as agriculture, health, transport and water resources. However quantitative rainfall prediction is normally a challenge and for this reason, this study was conducted with an aim of improving rainfall prediction using ensemble methods. It first assessed the performance of six convective schemes (Kain–Fritsch (KF); Betts–Miller–Janjic (BMJ); Grell–Fretas (GF); Grell 3D ensemble (G3); New–Tiedke (NT) and Grell–Devenyi (GD)) using the root mean square error (RMSE) and mean error (ME) focusing on the March–May 2013 rainfall period over Uganda. 18 ensemble members were then generated from the three best performing convective schemes (i.e., KF, GF and G3). The daily rainfall predicted by the three ensemble methods (i.e., ensemble mean (ENS); ensemble mean analogue (EMA) and multi–member analogue ensemble (MAEM)) was then compared with the observed daily rainfall and the RMSE and ME computed. The results shows that the ENS presented a smaller RMSE compared to individual schemes (ENS: 10.02; KF: 23.96; BMJ: 26.04; GF: 25.85; G3: 24.07; NT: 29.13 and GD: 26.27) and a better bias (ENS: −1.28; KF: −1.62; BMJ: −4.04; GF: −3.90; G3: −3.62; NT: −5.41 and GD: −4.07). The EMA and MAEM presented 13 out of 21 stations and 17 out of 21 stations respectively with smaller RMSE compared to ENS thus demonstrating additional improvement in predictive performance. This study proposed and described MAEM and found it producing comparatively better quantitative rainfall prediction performance compared to the other ensemble methods used. The MAEM method should be valid regardless the nature of the rainfall season.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []