Interhemispheric functional connectivity in the zebra finch brain, absent the corpus callosum in normal ontogeny

2019 
Abstract Bilaterally symmetric intrinsic brain activity (homotopic functional connectivity; FC) is a fundamental feature of the mammalian brain's functional architecture. In mammals, homotopic FC is primarily mediated by the corpus callosum (CC), a large interhemispheric white matter tract thought to balance the bilateral coordination and hemispheric specialization critical for many complex brain functions, including human language. The CC first emerged with the Eutherian (placental) mammals ∼160 MYA and is not found among other vertebrates. Despite this, other vertebrates also exhibit complex brain functions requiring hemispheric specialization and coordination. For example, the zebra finch ( Taeniopygia guttata ) songbird learns to sing from tutors much as humans acquire speech and must balance hemispheric specialization and coordination to successfully learn and produce song. We therefore tested whether the zebra finch also exhibits homotopic FC, despite lacking the CC. Resting-state fMRI analyses demonstrated widespread homotopic FC throughout the zebra finch brain across development, including within a network required for learned song that lacks direct interhemispheric structural connectivity. The presence of homotopic FC in a non-Eutherian suggests that ancestral pathways, potentially including indirect connectivity via the anterior commissure, are sufficient for maintaining a homotopic functional architecture, an insight with broad implications for understanding interhemispheric coordination across phylogeny.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    132
    References
    5
    Citations
    NaN
    KQI
    []