Pair Processes: Channels, Codes, and Couplings

2011 
We have considered a random process or source {X n } as a sequence of random entities, where the object produced at each time could be quite general, e.g., a random variable, vector, or waveform. Hence sequences of pairs of random objects such as {X n , Y n } are included in the general framework. We now focus on the possible interrelations between the two components of such a pair process. First consider the situation where we begin with one source, say {X n }, called the input and use either a random or a deterministic mapping of the input sequence {X n } to form an output sequence fYng. We generally refer to the mapping as a channel if it is random and a code if it is deterministic. Hence a code is a special case of a channel and results for channels will immediately imply corresponding results for codes. The initial point of interest will be conditions on the structure of the channel under which the resulting pair process fXn; Yng will inherit stationarity and ergodic properties from the original source {X n }. We will also be interested in the behavior resulting when the output of one channel serves as the input to another, that is, when we form a new channel as a cascade of other channels. Such cascades yield models of a communication system which typically has a code mapping (called the encoder) followed by a channel followed by another code mapping (called the decoder). Lastly, pair processes arise naturally in other situations, including coupling two separate processes by constructing a joint distribution. This chapter develops the context for the development in future chapters of the properties of information and entropy arising in pair processes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []