Describing Structure and Complex Interactions in Multi-agent-based Industrial Cyber-physical Systems

2021 
The description of structure and complex interactions in Multi-agent-based Industrial Cyber-physical (MAS-ICPS) systems has been elusively addressed in the literature. Existing works, grounded on model-based engineering, have been successful at characterizing and solving system integration problems. However, they fail to describe accurately the collective and dynamic execution behaviour of large and complex industrial systems, particularly in more discrete production domains, such as: automotive, home appliances, aerospace, food and beverages, etc. In these domains, the execution flow diverts dynamically due to production disturbances, custom orders, fluctuations in demand in mixed model production, faults, quality-control and product rework, etc. These dynamic conditions require re-allocation and reconfiguration of production resources, redirection of production flows, re-scheduling of orders, etc. A meta-model for describing the structure and complex interactions in MAS-ICPS is defined in this paper. This contribution goes beyond the State-Of-The-Art (SOTA) as the proposed meta-model describes structure, as many other literature contributions, but also describes the execution behaviour of arbitrarily complex interactions. The previous is achieved with the introduction of general execution flow control operators in the meta-model. These operators cover, among other aspects, delegation of the execution flow and dynamic decision making. Additionally, the contribution also goes beyond the SOTA by including validation mechanisms for the models generated by the meta-model. Finally, the contribution adds to the current literature by providing a meta-model focusing on production execution and not just on describing the structural connectivity aspects of ICPSs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []