What can information-asymmetric games tell us about the context of Crick's ‘frozen accident’?

2013 
This paper describes a novel application of information-asymmetric (signalling) games to molecular biology in which utility is determined by the message complexity (rate) in addition to the error in information transfer (distortion). We show using a computational model how it is possible for the agents in one such game to evolve a signalling convention (separating equilibrium) that is suboptimal in terms of information transfer, but is nonetheless stable. In the context of an RNA world merging with a nascent amino acid one, such a game's equilibrium is alluded to by the genetic code, which is nearly optimal in terms of information transfer, but is also near-universal and nearly immutable. Such a framework suggests that cellularity may have emerged to encourage coordination between RNA species and sheds light on other aspects of RNA world biochemistry yet to be fully understood.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    10
    Citations
    NaN
    KQI
    []