A subnanosecond electric pulse exposure system for biological cells.

2017 
An exposure system adapted for use on a microscope stage was constructed for studying the effects of high electric field, subnanosecond pulses on biological cells. The system has a bandpass of 3 GHz and is capable of delivering high-voltage electric pulses (6.2 kV) to the electrodes, which are two tungsten rods (100 μm in diameter) in parallel with a gap distance of 170 μm. Electric pulses are delivered to the electrodes through a π network, which serves as an attenuator as well as an impedance matching unit to absorb the reflection at the electrodes. By minimizing the inductance of the pulse delivery system, it was possible to generate electric fields of up to 200 kV/cm with a pulse duration of 500 ps at the surface of the cover slip under the microscope. The electric field at the cover slip was found to be homogenous over an area of 50–70 μm. Within this area, neuroblastoma cells placed on the cover slip were studied with respect to membrane potential changes caused by subnanosecond pulses. This allowed us, for the first time, to demonstrate depolarization of the cell membrane potential.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    15
    Citations
    NaN
    KQI
    []