Finding the Optimal Dynamic Treatment Regime Using Smooth Fisher Consistent Surrogate Loss.

2021 
Large health care data repositories such as electronic health records (EHR) opens new opportunities to derive individualized treatment strategies to improve disease outcomes. We study the problem of estimating sequential treatment rules tailored to patient's individual characteristics, often referred to as dynamic treatment regimes (DTRs). We seek to find the optimal DTR which maximizes the discontinuous value function through direct maximization of a fisher consistent surrogate loss function. We show that a large class of concave surrogates fails to be Fisher consistent, which differs from the classic setting for binary classification. We further characterize a non-concave family of Fisher consistent smooth surrogate functions, which can be optimized with gradient descent using off-the-shelf machine learning algorithms. Compared to the existing direct search approach under the support vector machine framework (Zhao et al., 2015), our proposed DTR estimation via surrogate loss optimization (DTRESLO) method is more computationally scalable to large sample size and allows for a broader functional class for the predictor effects. We establish theoretical properties for our proposed DTR estimator and obtain a sharp upper bound on the regret corresponding to our DTRESLO method. Finite sample performance of our proposed estimator is evaluated through extensive simulations and an application on deriving an optimal DTR for treatment sepsis using EHR data from patients admitted to intensive care units.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    0
    Citations
    NaN
    KQI
    []