High-resolution temporal detection of cyanobacterial blooms in a deep and oligotrophic lake by high-frequency buoy data.

2022 
Abstract Cyanobacterial blooms are increasing in magnitude, frequency, and duration worldwide. However, our knowledge of cyanobacterial blooms dynamics and driving mechanisms is still limited due to their high spatiotemporal variability. To determine the potential driving mechanisms of cyanobacterial blooms in oligotrophic lakes, we collected a high-frequency depth profile of chlorophyll fluorescence (ChlF) and synchronous water quality, hydrometeorological data in early spring 2016 in oligotrophic Lake Qiandaohu. The vertical distribution of ChlF exhibited two patterns, “aggregated” and “discrete”, using Morisita's index, and the aggregated ChlF presented subsurface chlorophyll maxima during the thermal stratification period. The ChlF concentration was positively correlated with water temperature and negatively correlated with turbidity. Significantly linear relationships were observed between ChlF vertical structure parameters (e.g., Morisita's index, subsurface chlorophyll maxima depth and thickness) and thermal stratification parameters (e.g., mixing layer depth and relative water column stability). After rainstorm floods, the ChlF pattern suddenly change from “aggregated” to “discrete” and a ChlF concentration
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    0
    Citations
    NaN
    KQI
    []