Oxidative Steam Reforming and Steam Reforming of Methane, Isooctane, and N-Tetradecane over an Alumina Supported Spinel-Derived Nickel Catalyst

2016 
The present work is focused on analyzing the potential of an alumina-supported spinel-derived nickel catalyst for oxidative steam reforming and steam reforming of model hydrocarbons present in gasoline and diesel, namely, isooctane and n-tetradecane, respectively. For comparative purposes these reforming processes have also been investigated for methane, and the catalytic behavior of a commercial rhodium catalyst has been evaluated as well. When operating with a relatively high volume hourly space velocity (equivalent to 60 000 cm3 C g–1 h–1) at a low temperature (600 °C) for 31 h time on stream, the activity of the investigated nickel catalyst is high and, more importantly, stable in the reforming of methane (by either steam reforming or oxidative steam reforming) and the oxidative steam reforming of isooctane. As for n-tetradecane a significant loss of activity with time on line is found, more pronounced under steam reforming conditions. Although the presence of oxygen helps in controlling coking, the r...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    15
    Citations
    NaN
    KQI
    []