Radio number of Hamming graphs of diameter 3

2020 
For $G$ a simple, connected graph, a vertex labeling $f:V(G)\rightarrow \mathbb{Z}_+$ is called a $\textit{radio labeling of}$ $G$ if it satisfies $|f(u)-f(v)|\geq \operatorname{diam}(G) + 1 - d(u,v)$ for all distinct vertices $u,v\in V(G)$. The $\textit{radio number}$ of $G$ is the minimal span over all radio labelings of $G$. If a bijective radio labeling onto $\{1,2,...,|V(G)|\}$ exists, $G$ is called a $\textit{radio graceful graph}$. We determine the radio number of all diameter $3$ Hamming graphs and show that an infinite subset of them is radio graceful.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    0
    Citations
    NaN
    KQI
    []