Combining acoustic telemetry with a mechanistic model to investigate characteristics unique to successful Atlantic salmon smolt migrants through a standing body of water

2021 
The Atlantic salmon, Salmo salar Linnaeus 1758, is a charismatic, anadromous species that has faced dramatic declines throughout its range. There is currently a lack of information on the effect of free-standing bodies of water on a key life event, sea migration, for the species. This study extends our understanding in this area by combining acoustic telemetry with a correlated random walk model to try to examine potential morphological and behavioural factors that differentiate successful from unsuccessful migrants through Scotland’s largest lake. Consistent with other studies, we found that smolts experienced a high rate of mortality in the lake (~ 43%), with approximately 14% potentially predated upon by birds and 4% by Northern pike. Migration speed in the lake was slow (the mean minimum movement speed between centres of activity was 0.13 m/s), and pathways frequently deviated away from the outlet river. There was no evidence of a morphological or behavioural trait or migratory pathway that distinguished successful from unsuccessful smolts. This suggests that migration movement direction in the main body of Loch Lomond appeared to be random. This was further supported by the output of a correlated random walk model which closely resembled the pathway and migration speed and distance patterns displayed by successful migrants. However, once successful smolts came within ~2 km of the lake exit, a high proportion remained in this region prior to entering the River Leven. We suggest that this “goldilocks zone” is where directional cues become apparent to migrating fish. Future studies should combine random walk models with environmental variables to determine if external factors are driving the apparently random movement patterns exhibited by smolts in lakes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    0
    Citations
    NaN
    KQI
    []