Cracking and shape deformation of cylindrical cavities during constrained sintering

2017 
Abstract During constrained sintering of thin films, in which a cylindrical cavity with axis perpendicular to the substrate has been introduced before sintering, cracks emerge that initiate at the cavity surface. By combining experiments with continuum mechanical and particle based simulations, the fundamental causes and effects of this kind of crack formation are identified. A stress analysis performed by finite element (FEM) simulations matches with the cracking behavior observed in experiments. A comparison of discrete element (DEM) results with experiments shows the applicability of this simulation method to describe the effect of cross-sectional stripe dimensions and cavity diameters on the cracking behavior. Moreover, DEM simulations reveal that hair-line cracks in narrow stripe samples formed during pre-sintering manufacturing steps might be a dominant cause for the observed crack damage in such systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    4
    Citations
    NaN
    KQI
    []