Sway: Traffic-Aware QoS Routing in Software-Defined IoT

2018 
In this paper, we propose a traffic-aware quality-of-service (QoS) routing scheme in software-defined internet of things (SDIoT) network. The proposed scheme exploits the unique features of software-defined networking (SDN), such as flow-based nature, and network flexibility, in order to fulfill QoS requirements of each flow in the network. We consider two types of QoS routing strategies — delay-sensitive and loss-sensitive — for incoming packets from end-devices in the network. The former is devised to deal with delay-sensitive flows, and the latter deals with loss-sensitive flows, in order to maximize the overall network performance. We propose a greedy approach based on Yen's K-shortest paths algorithm to compute the optimal forwarding path, while considering the QoS requirements of each packet. Consequently, the SDN controller deploys adequate flow-rules at the forwarding devices in the network. Extensive simulation results show that the proposed scheme significantly reduces the end-to-end delay and the percentage of flows which violate QoS constraints compared to the benchmarks considered in the study. In particular, the proposed scheme achieves 13%, 14% and 15% (with AttMpls topology) and 38%, 37% and 39% (with Goodnet topology) reduction in QoS violated flows as compared to the LARAC, SPD, and MRC schemes, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    28
    Citations
    NaN
    KQI
    []