The Destruction of Protogalaxies by Pop III Supernovae: Prompt Chemical Enrichment and Supermassive Black Hole Growth

2013 
The first primitive galaxies formed from accretion and mergers by z ~ 15, and were primarily responsible for cosmological reionization and the chemical enrichment of the early cosmos. But a few of these galaxies may have formed in the presence of strong Lyman-Werner UV fluxes that sterilized them of H_2, preventing them from forming stars or expelling heavy elements into the IGM prior to assembly. At masses of 10^8 Ms and virial temperatures of 10^4 K, these halos began to rapidly cool by atomic lines, perhaps forming 10^4 - 10^6 Ms Pop III stars and, later, the seeds of supermassive black holes. We have modeled the explosion of a supermassive Pop III star in the dense core of a line-cooled protogalaxy with the ZEUS-MP code. We find that the supernova (SN) expands to a radius of ~ 1 kpc, briefly engulfing the entire galaxy, but then collapses back into the potential well of the dark matter. Fallback fully mixes the interior of the protogalaxy with metals, igniting a violent starburst and fueling the rapid growth of a massive black hole at its center. The starburst would populate the protogalaxy with stars in greater numbers and at higher metallicities than in more slowly-evolving, nearby halos. The SN remnant becomes a strong synchrotron source that can be observed with eVLA and eMERLIN and has a unique signature that easily distinguishes it from less energetic SN remnants. Such explosions, and their attendant starbursts, may well have marked the birthplaces of supermassive black holes on the sky.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []