Hierarchical integration of porosity in shales

2018 
Pore characterization in shales is challenging owing to the wide range of pore sizes and types present. Haynesville-Bossier shale (USA) was sampled as a typical clay-bearing siliceous, organic-rich, gas-mature shale and characterized over pore diameters ranging 2 nm to 3000 nm. Three advanced imaging techniques were utilized correlatively, including the application of Xe+ plasma focused ion beam scanning electron microscopy (plasma FIB or PFIB), complemented by the Ga+ FIB method which is now frequently used to characterise porosity and organic/inorganic phases, together with transmission electron microscope tomography of the nano-scale pores (voxel size 0.6 nm; resolution 1-2 nm). The three pore-size scales each contribute differently to the pore network. Those 100 nm (greatest total volume hence determines fluid storativity). Four distinct pore types were found: intra-organic, organic-mineral interface, inter-mineral and intra-mineral pores were recognized, with characteristic geometries. The whole pore network comprises a globally-connected system between phyllosilicate mineral grains (diameter: 6-50 nm), and locally-clustered connected pores within porous organic matter (diameter: 200-800 nm). Integrated predictions of pore geometry, connectivity, and roles in controlling petrophysical properties were verified through experimental permeability measurements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    67
    Citations
    NaN
    KQI
    []