CRISPR Technique Incorporated with Single-Cell RNA Sequencing for Studying Hepatitis B Infection.

2021 
Single-cell RNA sequencing (scRNA-seq) provides rich transcriptomic information for studying molecular events and cell heterogeneity at the single-cell level. However, it is challenging to obtain sequence information from rare or low-abundance genes in the presence of other highly abundant genes. We report here a CRISPR-Cas9 technique for the depletion of high-abundance transcripts, resulting in preferential enrichment of rare transcripts. We demonstrate an application of this CRISPR-mediated enrichment technique to scRNA-seq of liver cells infected with hepatitis B virus (HBV). Direct sequencing without the CRISPR-mediated enrichment detected HBV RNA in only 0.6% of the cells. The CRISPR-mediated depletion of the three most abundant transcripts resulted in selective enrichment of the HBV transcript and successful sequencing of HBV RNA in more than 74% of the cells. The improvement enabled a study of HBV infection and interferon treatment of a liver cell model. Gene clusters between the control and HBV-infected Huh7.5-NTCP cells were similar, suggesting that HBV infection did not significantly alter gene expression of the host cells. The treatment with interferon alpha dramatically changed the gene expression of Huh7.5-NTCP cells. These results from the single cell RNA-seq analysis of 7370 cells are consistent with those of bulk experiments, suggesting that HBV is a "stealth virus".
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []