Using ultra-fast spectroscopy to probe the excited state dynamics of a reported highly efficient thermally activated delayed fluorescence chromophore

2019 
Multiple ultrafast spectroscopic techniques and quantum chemical simulations (QCS) were used to investigate the excited state dynamics of BCC-TPTA. This organic chromophore is believed to possess excited state dynamics governed by a thermally activated delayed fluorescence (TADF) mechanism with a reported internal quantum efficiency (ηIQE) of 84%. In addition, a significant enhancement in its quantum yield (Φ) in solution after purging oxygen has been reported. This Φ enhancement has been widely accepted as due to a delayed fluorescence process occurring on the μs time-scale. The spectroscopic measurements were carried out both in solution and blended films, and from fs to μs time-scales. The excited state dynamics of Rhodamine B and Ir(BT)2(acac) were also probed for comparison. Investigations in the absence of oxygen were also carried out. Our time-correlated single photon counting (TCSPC) measurements revealed a lack of a long-lived emissive lifetime for BCC-TPTA in any of the media tested. Our ns transient absorption spectroscopy (ns TAS) experiments revealed that BCC-TPTA does not possess triplet transient states that could be linked to a delayed fluorescence process. Instead, the evidence obtained from our spectroscopic tools suggests that BCC-TPTA has the excited state dynamics of a typical fluorescence chromophore and that just comparing the Φ difference before and after purging oxygen from the solution is not an accurate method to claim excited state dynamics governed by a delayed fluorescence mechanism. Consequently, we believe that previous studies, in which the photo-physics of organic chromophores with TADF characteristics are reported, may have overlooked the influence of the host materials on the obtained optical properties in blended films.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    7
    Citations
    NaN
    KQI
    []