Extended cycle life implications of fast charging for lithium-ion battery cathode

2021 
Abstract Enabling extreme fast charging (XFC, ≤10–15 min charging) requires a comprehensive understanding of its implications. While lithium plating is a key bottleneck for the anode, the full extent of limitations for the cathode are not well-understood, particularly in extended-cycle settings with well-defined battery designs and conditions. This article presents cycle-life implications of XFC on cathodes at multiple length scales, combining electrochemical analyses, degradation modeling, and post-test characterizations. The comprehensive test matrix includes 41 well-defined gr/NMC pouch cells under varied fast-charge rates (1–9C) and state-of-charges cycled up to 1000 times. Cathode issues remain minimal in early cycling, but begin to accelerate in later life, when distinct cracking is found and identified as a fatigue mechanism. The bulk structure of cathodes remains intact, but distinct particle surface reconstruction is observed; however, this shows less pronounced effect on cathode aging than does cracking.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    7
    Citations
    NaN
    KQI
    []