Fluid-driven traveling waves in soft robots

2021 
Many marine creatures, gastropods, and earthworms generate continuous traveling waves in their bodies for locomotion within marine environments, complex surfaces, and inside narrow gaps. In this work, we study theoretically and experimentally the use of embedded pneumatic networks as a mechanism to mimic nature and generate bi-directional traveling waves in soft robots. We apply long-wave approximation to theoretically calculate the required distribution of pneumatic network and inlet pressure oscillations needed to create desired moving wave patterns. We then fabricate soft robots with internal pneumatic network geometry based on these analytical results. The experimental results agree well with our model and demonstrate the propagation of moving waves in soft robots, along with locomotion capabilities. The presented results allow fabricating soft robots capable of continuous moving waves via the common approach of embedded pneumatic networks and requiring only two input controls.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []