Study on microfracture mechanism of short glass fiber reinforced polycarbonate by using acoustic emission

2018 
The influence of the difference in wettability between glass fiber (GF) and polycarbonate (PC) on the microfractures of GF reinforced PC was investigated by using an acoustic emission (AE) method. In the case of well-coupled GF-reinforced PC, it is suggested that in the AE amplitude region higher than about 16 mV, microfracture related to scission of polymer chains occurs at the interfacial layer between GF and PC. On the other hand, in the case of poorly-coupled GF-reinforced PC under stress, debonding and interfacial slippage between GF and PC occurred below the yield stress of PC, whereas interfacial fracture and GF breakage occurred above the yield stress. Debonding and interfacial slippage between GF and the PC matrix were closely related to an AE amplitude smaller than about 16 mV. The relationship between stress and AE events is expressed in this case by the Eyring model. The activation energy of interfacial slippage between GF and PC was about 74 kJ/mol, which corresponds to the energy of chain-backbone motion of PC in the glassy state. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45664.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    1
    Citations
    NaN
    KQI
    []