Comparison of Inviscid Computations with Theory and Experiment in Vibrating Transonic Compressor Cascades

1990 
The prediction of unsteady flow in vibrating transonic cascades is essential in assessing the aeroelastic stability of fans and compressors. In the present work an existing computational code, based on the numerical integration of the unsteady Euler equations, in blade-to-blade surface formulation, is validated by comparison with available theoretical and experimental results. Comparison with the flat plate theory of Verdon is, globally, satisfactory. Nevertheless, the computational results do not exhibit any particular behaviour at acoustic resonance. The use of a 1-D nonreflecting boundary condition does not significantly alter the results. Comparison of the computational method with experimental data from started and unstarted supersonic flows, with strong shock waves, reveals that, notwithstanding the globally satisfactory performance of the method, viscous effects are prominent at the shock wave/boundary layer interaction regions, where boundary layer separation introduces a pressure harmonic phase shift, which is not presicted by inviscid methods.Copyright © 1990 by ASME
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    14
    Citations
    NaN
    KQI
    []