Optimal Design and Experimental Verification of Ultrasonic Cutting Horn for Ceramic Composite Material

2021 
We developed and optimized a block-type ultrasonic horn that can be used for cutting hard materials. The proposed block-type sonotrode consists of an aluminum horn and a tungsten carbide blade to increase the cutting of hard materials. We designed an initial ultrasonic block horn that has double slots and an exponential stepped profile. We developed a finite element model of the initial model and analyzed the characteristics of natural frequency and displacement. We formulated a DOE table and response surface to perform sensitivity analysis and analyze the correlation between the design variables and characteristics of the proposed block horn. The optimal ultrasonic block horn was derived via a multi-objective optimal design problem to maximize the amplitude uniformity of the proposed horn and frequency separation. We fabricated the optimal block horn and verified it experimentally. An ultrasonic cutting experiment was conducted to find the ultrasonic cutting force with hard ceramic composite materials. A cutting test with a conventional cutting machine under the same condition was also conducted to compare the cutting force. The proposed optimal ultrasonic cutter requires 70% less cutting force than the conventional cutter to cut a ceramic composite material and the cutting surface with the application of the proposed optimal ultrasonic cutter is much cleaner with no crack and delamination than that with the application of the conventional cutter.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []