Coherent-hybrid STED: a tunable photo-physical pinhole for super-resolution imaging at high contrast

2018 
Resolution in microscopy is not limited by diffraction as long as a nonlinear sample response is exploited. In a paradigmatic example, stimulated-emission depletion (STED) fluorescence microscopy fundamentally breaks the diffraction limit by using a structured optical pattern to saturate depletion on a previously excited sample area. Two-dimensional (2D) STED, the canonical low-noise STED mode, structures the STED beam by using a vortex phase mask, achieving a significant lateral resolution improvement over confocal fluorescence microscopy. However, axial resolution and optical sectioning remain bound to diffraction. Here we use a tunable coherent-hybrid (CH) beam to improve optical sectioning, markedly reducing background fluorescence. CH-STED, which inherits the 2D-STED immunity to spherical aberration, diversifies the depletion strategy, allowing an optimal balance between two key metrics (lateral resolution and background suppression) to be found. CH-STED is used to perform high-contrast imaging of complex biological structures, such as the mitotic spindle and the neuron cell body.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []