Epigenetic silencing of microRNA-125b-5p promotes liver fibrosis in nonalcoholic fatty liver disease via integrin α8-mediated activation of RhoA signaling pathway

2020 
Abstract Background Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases that may progress to liver fibrosis or cancer. The present study aimed to investigate the role of microRNA-125b-5p (miR-125b-5p) in NAFLD and to further explore underlying molecular mechanisms. Methods A mouse model of NAFLD was constructed by high cholesterol diet feeding and a cell-model was developed by treating the mouse liver cell line NCTC1469 with palmitic acid. Gain- and loss-of-function experiments were performed to determine the effects of miR-125b-5p, integrin α8 (ITGA8), and the RhoA signaling pathway on liver fibrosis in NAFLD. After the expression levels of miR-125b-5p, ITGA8, and RhoA were determined, liver fibrosis was evaluated in vivo and in vitro. The binding relationship of miR-125b-5p and ITGA8 was then validated. Finally, miR-125b-5p promoter methylation in NAFLD liver tissues and cells was determined. Results In NAFLD clinical samples, mouse model, and cell-model, miR-125b-5p expression was reduced, while ITGA8 expression was increased. Moreover, miR-125b-5p targeted and downregulated ITGA8, leading to inhibition of the RhoA signaling pathway. In NAFLD liver tissues and cells, the CpG island in the miR-125b-5p promoter was methylated, causing epigenetic silencing of miR-125b-5p. Both miR-125b-5p silencing and ITGA8 overexpression promoted in vitro and in vivo liver fibrosis in NAFLD via activation of the RhoA signaling pathway. Conclusions Collectively, epigenetic silencing of miR-125b-5p upregulates ITGA8 expression to activate the RhoA signaling pathway, leading to liver fibrosis in NAFLD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    8
    Citations
    NaN
    KQI
    []