Phonon transport across GaN/AlN interface: Interfacial phonon modes and phonon local non-equilibrium analysis

2022 
Abstract Interfacial thermal conductance (ITC) is of critical importance for GaN-based device performance. GaN/AlN is a key component in GaN-based devices. Therefore, systematically investigating the interfacial thermal transport between GaN and AlN is of great significance for the thermal management of GaN-based devices. The temperature dependence of ITC across GaN/AlN interfaces are investigated using nonequilibrium molecular dynamics (NEMD) and Monte Carlo simulations based on first-principles calculations. Interestingly, the calculated ITC is much larger than that of GaN/metal, GaN/Si and GaN/SiC. Structural similarity and interfacial phonon modes are used to reveal the underlying mechanism. Moreover, the modal temperature and wave-resolved spectral heat flux are calculated to understand the interfacial thermal nonequilibrium and the dominant thermal transport channel, respectively. This study explores the modal-level and frequency-level mechanisms for interfacial thermal transport between GaN and AlN, which provides effective understanding in thermal management of GaN-based devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []