Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon

2019 
The plasmonic properties of tip–substrate composite systems are of vital importance to near-field optical spectroscopy, in particular tip-enhanced Raman spectroscopy (TERS), which enables operando studies of nanoscale chemistry at a single molecule level. The nanocavities formed in the tip–substrate junction also offer a highly tunable platform for studying field-matter interactions at the nanoscale. While the coupled nanoparticle dimer model offers a correct qualitative description of gap-mode plasmon effects, it ignores the full spectrum of multipolar tip plasmon modes and their interaction with surface plasmon polariton (SPP) excitation in the substrate. Herein, we perform the first tip-enhanced Raman excitation spectroscopy (TERES) experiment and use the results, both in ambient and aqueous media, in combination with electrodynamics simulations, to explore the plasmonic response of a Au tip–Au substrate composite system. The gap-mode plasmon features a wide spectral window corresponding to a host of t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    17
    Citations
    NaN
    KQI
    []