Compared effects of calcium entry blockers on calcium-induced tension in rat isolated cerebral and peripheral resistance vessels

1987 
The effects of the calcium entry blockers verapamil (V), diltiazem (D), nifedipine (NF) and nicardipine (NC) have been studied on calcium concentration-effect curves elicited in depolarized (K+, 40 mmol/l) and in serotonin-exposed (6 μmol/l) rat middle cerebral arteries (RMCA) in order to compare the relative potencies of the blockers against these two calcium channel activating mechanisms. In control conditions, Ca2+ sensitivity expressed as pD2 and maximal active wall tension (AWT) were not significantly different in depolarized and in 5-HT-exposed vessels: pD2: 3.39 ±0.08 vs 3.50 ± 0.06 and AWT: 0.93 ± 0.15 mN · mm−1 vs 0.90 ± 0.16 mN · mm−1 respectively. V, D, NF and NC displaced Ca2+ control curves to the right and depressed the maximum contractile response in the two experimental conditions, which suggests a noncompetitive type of antagonism. All the blockers were more potent inhibitors of Ca2+-induced contractions in depolarized than in serotonin-exposed middle cerebral arteries. The IC50 values (concentration of blockers producing a 50% inhibition of maximal control contractile response) were (nmol/l) : V = 20, D = 120, NF = 0.4, NC = 1 and V = 400, D = 10000, NF = 20, NC = 7 in depolarized and serotonin-exposed arteries respectively. From these IC50 values, the relative order of potency of the CEB's was not the same in the two experimental conditions suggesting that while serotonin and K+ both promote the entry of Ca2+ into vascular smooth muscle cells of RMCA, they either activate a different gating mechanism associated with a single common channel or perhaps distinct channels. Comparison of the results obtained in this study for depolarized rat middle cerebral arteries with those previously obtained in depolarized rat mesenteric resistance arteries (RMRA) revealed that while Ca2+-induced contractile responses were inhibited in a similar non-competitive manner by the four CEB's, the respective IC50 values showed that potencies and rank of relative potency of the blockers were different in the two types of vessels. D and NC were equally potent in both preparations (IC50 ratio = 2.5 and 3 respectively) but RMCA were more sensitive to V and NF than RMRA (IC50 ratio = 6.5 and 11 respectively). These results are discussed and it is proposed that regional differencies in the conformation and/or the activation of the voltage-gated Ca2+ channels may exist in different vascular beds.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    8
    Citations
    NaN
    KQI
    []