Fairea: a model behaviour mutation approach to benchmarking bias mitigation methods

2021 
The increasingly wide uptake of Machine Learning (ML) has raised the significance of the problem of tackling bias (i.e., unfairness), making it a primary software engineering concern. In this paper, we introduce Fairea, a model behaviour mutation approach to benchmarking ML bias mitigation methods. We also report on a large-scale empirical study to test the effectiveness of 12 widely-studied bias mitigation methods. Our results reveal that, surprisingly, bias mitigation methods have a poor effectiveness in 49% of the cases. In particular, 15% of the mitigation cases have worse fairness-accuracy trade-offs than the baseline established by Fairea; 34% of the cases have a decrease in accuracy and an increase in bias. Fairea has been made publicly available for software engineers and researchers to evaluate their bias mitigation methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    3
    Citations
    NaN
    KQI
    []