A Study of the Wear Resistance of Chromium Cladding by Dry Friction on Steel and an Abrasive

2020 
The wear resistance of a deposited layer made of experimental 40Cr16MnSi chromium wire was experimentally investigated. The work was carried out by comparing the wear of 65Mn steel with cladding and without it via the friction and wear based on two schemes of tribological laboratory tests without lubrication and cooling of the material. The first simulated the conditions of adhesion-fatigue wear, while the second simulated an abrasive. It is shown that the alloying of the filler wire with manganese and silicon made it possible to eliminate the formation of pores in the deposited layer during surfacing in protective gases. A high content of chromium provides uniformity of the microstructure, high hardness and, accordingly, wear resistance. It has been established that the formation of the martensitic structure initially has high hardness (~58 HRC) and a reserve for an increase under mechanical stress (~1.3 times). Surfacing with 40Cr16MnSi wire instead of the “sormayt” alloy type on the tops of screws helped to reduce the complexity and cost of recovery of products that provide a comparable resource. These results allow us to consider the 40Cr16MnSi experimental wire as a promising wear-resistant material for the restoration of machine parts and mechanisms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    1
    Citations
    NaN
    KQI
    []