Photomorphogenesis and phyllotaxis during vegetative growth in Sinapis alba and Xanthium strumarium

2006 
Abstract The effect of light on the rate of formation of leaf primordia was investigated at the apex of seedlings of Sinapis alba and Xanthium strumarium. It was found that light accelerates this rate. On the other hand, no significant light effect was found on the angles of divergence of successive leaves during the transition from the almost decussate leaf position of the cotyledons to the helical phyllotaxis of the stem leaves. In fact, light and dark grown plants use the same leaves for the transition from decussate to helical phyllotaxis. Thus, if time is plotted in ‘biological units’ (number of primordia) there is no difference between light and dark grown plants. Using scanning electron microscope techniques it was found that the ‘primordia free apical area’ enlarges during development. The rate of enlargement is accelerated by light. However, if time is expressed in biological units (number of primordia) no difference between light and dark grown plants exists. It is concluded that light accelerates the realization of the apical pattern without interfering with the specification of the pattern. In other words, light accelerates the development of an apex without affecting the temporal and spatial coordination of the events.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    6
    Citations
    NaN
    KQI
    []