Water in low-mass star-forming regions with Herschel: HIFI spectroscopy of NGC 1333
2010
'Water In Star-forming regions with Herschel' (WISH) is a key programme dedicated to studying the role of water and related species during the star-formation process and constraining the physical and chemical properties of young stellar objects. The Heterodyne Instrument for the Far-Infrared (HIFI) on the Herschel Space Observatory observed three deeply embedded protostars in the low-mass star-forming region NGC1333 in several H2-16O, H2-18O, and CO transitions. Line profiles are resolved for five H16O transitions in each source, revealing them to be surprisingly complex. The line profiles are decomposed into broad (>20 km/s), medium-broad (~5-10 km/s), and narrow ( 20 km/s), indicating that its physical origin is the same as for the broad H2-16O component. In one of the sources, IRAS4A, an inverse P Cygni profile is observed, a clear sign of infall in the envelope. From the line profiles alone, it is clear that the bulk of emission arises from shocks, both on small (<1000 AU) and large scales along the outflow cavity walls (~10 000 AU). The H2O line profiles are compared to CO line profiles to constrain the H2O abundance as a function of velocity within these shocked regions. The H2O/CO abundance ratios are measured to be in the range of ~0.1-1, corresponding to H2O abundances of ~10-5-10-4 with respect to H2. Approximately 5-10% of the gas is hot enough for all oxygen to be driven into water in warm post-shock gas, mostly at high velocities.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
33
References
92
Citations
NaN
KQI