Pharmacology and structures of the free base of the anaesthetic kazcaine and its complex with β-cyclodextrin

2010 
The base form of the local anaesthetic kazcaine (BFK, [1-(2-ethoxyethyl)-4-ethynyl-4-benzoyloxypiperidine, C18H23NO3]) and β-cyclodextrin (β-CD) co-crystallized as BFK:β-CD inclusion complex in 1:2 M ratio from a mixture of water and ethanol while the filtered mother liquor yielded crystals of free BFK. X-ray diffraction showed that the crystals of BFK and its inclusion complex with β-CD belong to monoclinic (P21/c) and triclinic (P1) space groups, respectively. The crystals of free BFK are stabilized by pairs of C–H⋯O, C–H⋯π and ≡C–H⋯O type interactions and van der Waals contacts. In the 1:2 BFK:β-CD complex the two β-CD molecules are in hydrogen-bonding contact with their primary hydroxyl groups, the 1-(2-ethoxyethyl)-4-ethynyl-piperidine moiety being located in one and the benzoyloxy group of BFK in the other β-CD. This crystal structure is of the channel-type, the β-CD molecules of the 1:2 BFK:β-CD complex interacting with their secondary hydroxyl groups. The pharmacological activities of the 1:2 BFK/β-CD inclusion complex have been determined in mice, rats, porpoises and rabbits and compare favourably with those of kazcaine, procaine, dicaine, lidocaine and trimecaine. The methods used include terminal (superficial), infiltration, conduction anaesthesia, and acute toxicity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    8
    Citations
    NaN
    KQI
    []