Graphene-based multilayered metamaterials with phototunable architecture for on-chip photonic devices

2019 
Graphene-based metamaterials have been theoretically demonstrated as an enabler for applications as perfect absorbers, photodetectors, light emitters, modulators, and tunable spintronic devices. However, challenges associated with conventional film deposition techniques have made the multilayered metamaterial difficult to fabricate, which have severely limited experimental validations. Herein, the experimental demonstration of the phototunable graphene-based multilayered metamaterials on diverse substrates by a transfer-free, solution-phase deposition method is presented. The optical properties of the metamaterials are tuned dynamically by controllable laser-mediated conversion from graphene oxide layers into graphene counterparts, which exhibit different degrees of conversion, which would offer huge potential for devices design and fabrication. The converted graphene layers present comparable (within 10%) optical conductivity to their chemical vapor deposited analogues. Moreover, laser patterning leads t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    67
    Citations
    NaN
    KQI
    []