Novel Boron-Doped p-Type Cu2O Thin Films as a Hole-Selective Contact in c-Si Solar Cells

2020 
P-type Cu2O thin film doped with trivalent cation Boron is demonstrated for the first time as an efficient hole selective layer for c-Si heterojunction solar cell. Cu2O and Cu2O:B films were deposited by rf- magnetron sputtering and the optical and electrical properties of the doped and undoped films were investigated. Boron doping enhanced the carrier concentration and the electrical conductivity of the Cu2O film. The band alignment of the Cu2O:B/Si heterojunction was investigated using XPS and UPS measurements. The Cu2O:B/Si interface has a valance band offset of 0.08 eV which facilitates hole transport and a conduction band offset of 1.35 eV which block the electrons. A thin SiOx tunnel oxide interlayer was also explored as the passivation layer. The initial trials of incorporating this Cu2O:B layer as hole transporting layer in a single heterojunction solar cell with the structure, ITO/Cu2O:B/n-Si/Ag, and cell area of 1 cm2 yielded an open-circuit voltage of 370 mV, short-circuit current density of 36...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    11
    Citations
    NaN
    KQI
    []