LncRNA ITSN1-2 knockdown inhibits OGD/R-induced inflammation and apoptosis in mouse hippocampal neurons via sponging miR-195-5p.

2021 
Objective The upregulation of long noncoding RNA intersectin 1-2 (lnc ITSN1-2) is associated with poor prognosis in acute ischemic stroke (AIS) patients, but the role and mechanism of lnc ITSN1-2 in AIS are rarely reported, which, thus, are highlighted in this study. Methods AIS cell model was constructed by oxygen glucose deprivation and reoxygenation (OGD/R). The quantitative real-time PCR was used to detect the expression of lnc ITSN1-2 in HT22 cells. The effects of lnc ITSN1-2 overexpression or knockdown on viability, LDH release, apoptosis, inflammatory and apoptotic factor expressions in OGD/R-induced HT22 cells were measured by cell counting kit-8 assay, LDH release kit, flow cytometry, ELISA and western blot, respectively. Starbase was used to screen the target genes of lnc ITSN1-2. The targeting relationship between lnc ITSN1-2 and miR-195-5p was predicted by starbase and verified by dual-luciferase report assay. The above assays were conducted again to study the function of miR-195-5p. Lastly, the levels of activated mitogen-activated protein kinases (MAPK) pathway-related proteins were determined by western blot. Results OGD/R treatment reduced the HT22 cell viability and enhanced LDH release rate and lnc ITSN1-2 expression. Lnc ITSN1-2 overexpression promoted the cell injury, apoptosis and inflammation in OGD/R-induced HT22 cells, while lnc ITSN1-2 knockdown generated the opposite effect and deactivated the MAPK pathways. However, the effect of lnc ITSN1-2 knockdown in OGD/R-induced HT22 cells was reversed by miR-195-5p inhibitor. Conclusion Lnc ITSN1-2 knockdown suppressed the inflammation and apoptosis in OGD/R-induced HT22 cells by regulating the miR-195-5p-mediated MAPK pathways.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []