Steady-state thermal gradient induced by pulsed laser excitation in a ferromagnetic layer Steady-state thermal gradient induced by pulsed laser excitation in a ferromagnetic layer

2016 
In all-optical pump-probe experiments on ferromagnetic layers, the determination of the temperature under the pump laser spot is crucial for a quantitative modeling of the magnetization dynamics. We present here a method to quantify this thermal gradient, exemplified on a (Ga, Mn)(As, P) ferromagnetic semiconductor layer on a GaAs substrate. To estimate the local steady-state temperature, we use the coercive field as a thermometer. The probe records the hysteresis cycle spatially across the hot spot, using the magnetic linear birefringence/dichroism of the sample. Our results are analyzed using the heat diffusion equation with two fitting parameters, the thermal conductivity of the layer/substrate sample and the thermal resistance between the substrate and the thermostat. This opens the way to a quantitative modeling of laser pulse-triggered magnetization dynamics in the presence oftransient temperature effects.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []