The Microstructure of TATB‐Based Explosive Formulations During Temperature Cycling Using Ultra‐Small‐Angle X‐Ray Scattering

2009 
TATB (1,3,5 triamino-2,4,6-trinitrobenzene), an extremely insensitive explosive, is used both in polymer-bound explosives (PBXs) and as an ultra-fine pressed powder (UFTATB). Many TATB-based explosives, including LX-17, a mixture of TATB and Kel-F 800 binder, experience an irreversible expansion with temperature cycling known as ratchet growth. Additional voids, with sizes hundreds of nanometers to a few micrometers, account for much of the volume expansion. Measuring these voids is important feedback for hot-spot theory and for determining the relationship between void size distributions and detonation properties. Also, understanding mechanisms for ratchet growth allows future choice of explosive/binder mixtures to minimize these types of changes, further extending PBX shelf life. This paper presents the void size distributions of LX-17, UFTATB, and PBXs using commercially available Cytop M, Cytop A, and Hyflon AD60 binders during temperature cycling between −55 and 70 °C. These void size distributions are derived from ultra-small-angle X-ray scattering (USAXS), a technique sensitive to structures from about 2 nm to about 2 μm. Structures with these sizes do not appreciably change in UFTATB. Compared to TATB/Kel-F 800, Cytop M and Cytop A show relatively small increases in void volume from 0.9 to 1.3% and 0.6 to 1.1%, respectively, while Hyflon fails to prevent irreversible volume expansion (1.2–4.6%). Computational mesoscale models combined with experimental results indicate both high glass transition temperature as well as TATB binder adhesion and wetting are important to minimize ratchet growth.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    24
    Citations
    NaN
    KQI
    []