Self-consistent method to extract non-linearities from pulsating stars light curves I. Combination frequencies

2020 
Combination frequencies are not solutions of the perturbed stellar structure equations. In dense power spectra from a light curve of a given multi-periodic pulsating star, they can compromise the mode identification in an asteroseismic analysis, hence they must be treated as spurious frequencies and conveniently removed. In this paper, a method based on fitting the set of frequencies that best describe a general non-linear model, like the Volterra series, is presented. The method allows to extract these frequencies from the power spectrum, so helping to improve the frequency analysis enabling hidden frequencies to emerge from the initially considered as noise. Moreover, the method yields frequencies with uncertainties several orders of magnitude smaller than the Rayleigh dispersion, usually taken as the present error in a standard frequency analysis. Furthermore, it is compatible with the classical counting cycles method, the so-called O-C method, which is valid only for mono-periodic stars. The method opens the possibility to characterise the non-linear behaviour of a given pulsating star by studying in detail the complex generalised transfer functions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    3
    Citations
    NaN
    KQI
    []