BAT AGN Spectroscopic Survey: XVI. General Physical Characteristics of BAT Blazars

2019 
The recently released 105-month Swift-Burst Alert Telescope (BAT) all-sky hard X-ray survey catalog presents an opportunity to study astrophysical objects detected in the deepest look at the entire hard X-ray (14−195 keV) sky. Here we report the results of a multifrequency study of 146 blazars from this catalog, quadrupling the number compared to past studies, by utilizing recent data from the Fermi-Large Area Telescope (LAT), Swift-BAT, and archival measurements. In our γ-ray analysis of ∼10 years of the LAT data, 101 are found as γ-ray emitters, whereas, 45 remains LAT undetected. We model the broadband spectral energy distributions with a synchrotron-inverse Compton radiative model. On average, BAT detected sources host massive black holes (M_(bh) ∼ 10^9 M⊙) and luminous accretion disks (L_d ∼ 10^(46) erg s^(−1)). At high-redshifts (z > 2), BAT blazars host more powerful jets with luminous accretion disks compared to those detected only with the Fermi-LAT. We find good agreement in the black hole masses derived from the single-epoch optical spectroscopic measurements and standard accretion disk modeling approaches. Other physical properties of BAT blazars are similar to those known for Fermi-LAT detected objects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    2
    Citations
    NaN
    KQI
    []