Energy State of a Plastically Deformed Surface Layer

2016 
Abstract The paper reports the results of experimental research on the substantiation of the criterion for steel strengthening effectiveness established on a basis of an energetic approach to the consideration of the mechanism for the surface layer formation with dynamic methods of plastic forming. Using the analogy between the processes of energy absorption of the crystal lattice under mechanical loading and under heating, the work demonstrates that the maximum specific energy which can absorb the crystal lattice corresponds to the value equal to the difference between the heat content (enthalpy) of the material in the solid state, at the melting temperature and enthalpy H_TS at 2930К. The proposed method and experimental device allowing to estimate the stored energy in the plastically deformed surface layer as the difference between the work expended in plastic deformation of the material and the quantity of the released heat. It was established that the energy growth limit in the local plastically deformed volume of a surface occurs at making of 11-13 acts of the action force; the further increase in acts influences the energy state of the surface as it becomes stabilized.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    3
    Citations
    NaN
    KQI
    []