Stereoselective pharmacokinetics of RS-8359, a selective and reversible MAO-A inhibitor, by species-dependent drug-metabolizing enzymes.

2005 
RS-8359, (±)-4-(4-cyanoanilino)-5,6-dihydro-7-hydroxy-7H-cyclopenta[d]pyrimidine selectively and reversibly inhibits monoamine oxidase A (MAO-A). After oral administration of rac-RS-8359 to rats, mice, dogs, monkeys, and humans, plasma concentrations of the (R)-enantiomer were greatly higher than were those of the (S)-enantiomer in all species studied. The AUC(R) to AUC(S) ratios were 2.6 in rats, 3.8 in mice, 31 in dogs, and 238 in monkeys, and the (S)-enantiomer was almost negligible in human plasma. After intravenous administration of RS-8359 enantiomers to rats, the pharmacokinetic parameters showed that the (S)-enantiomer had a 2.7-fold greater total clearance (CLt) and a 70% shorter half-life (t1/2) than those for the (R)-enantiomer but had no difference in distribution volume (Vd). No significant difference in the intestinal absorption rate was observed. The principal metabolites were the 2-keto form, possibly produced by aldehyde oxidase, the cis-diol form, and the 2-keto-cis-diol form produced by cytochrome P450 in rats, the cis-diol form in mice, RS-8359 glucuronide in dogs, and the 2-keto form in monkeys and humans. Thus, the rapid disappearance of the (S)-enantiomer from the plasma was thought to be due to the rapid metabolism of the (S)-enantiomer by different drug-metabolizing enzymes, depending on species. Chirality 17:135–141, 2005. © 2005 Wiley-Liss, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    35
    Citations
    NaN
    KQI
    []