Reconstruction algorithm of low-light integral imaging by electron-multiplying charge-coupled device

2019 
Electron-multiplying charge-coupled device (EMCCD) has the characteristic of single photon response under a low-light environment. It is proposed that the reconstruction algorithm of low-light integral imaging by EMCCD reconstruct the details of the target under a low-light environment. First, the algorithm acquires a series of element images by EMCCD integral imaging system. Second, as grayscale values of different element images of the same target meet Poisson distribution, the algorithm introduces a local self-adaptive factor and derives the posterior probability distribution of grayscale value of the target. Finally, it calculates the new element images by posterior probability distribution and reconstructs the target image by updated element images. Experimental results show that the peak signal-to-noise ratio of the reconstructed image by the proposed method is 4.3 dB higher than that of conventional Bayesian estimation. Considering the reconstructed image quality and computational complexity, the overall quality of the reconstructed image is the best when using the 7  ×  7 neighborhood range to calculate the local self-adaptive factor in the algorithm. Experimental results show that the proposed algorithm greatly improves the quality of the reconstructed image of the target under low-light environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    0
    Citations
    NaN
    KQI
    []