Structure identification of a karst groundwater system based on high-resolution rainfall-hydrological response characteristics.

2021 
Herein, we conducted a study of the Zhangsanxi karst groundwater system in Zhangjiajie, Hunan Province, China, and used the results to develop a method for identifying the aquifer medium and its structural characteristics. To begin, rainfall, underground river flow dynamics, and groundwater level dynamics in the Zhangsanxi karst groundwater system were subjected to high-resolution monitoring to elucidate the groundwater system's rainfall-hydrological response characteristics under varying rainfall amounts and intensities. Next, an exponential attenuation curve was employed to analyze how the law of attenuation applies to underground river discharge and groundwater level during a typical rainfall event. Finally, we determined the degree of karst development at different depths, so the data can serve as a reference for local decision makers regarding karst water disaster prevention and water resource utilization. The results show that the flow response lag time in the karst groundwater system depicts good correlation with the rainfall amount but is also affected by the rainfall intensity. Thus, under conditions of identical rainfall, increasing rainfall intensity corresponds to a progressively shorter underground river flow lag time. The area's rainfall can be divided into four types, based on its concentration and intensity characteristics. The underground river flow generally has no evident response to type I rainfall, while the flow response lag time to types II III and IV rainfall is approximately 110, 60, and 40 h, respectively. Furthermore, the Zhangsanxi karst system's water-bearing medium is dominated by karst fissures and pores, which account for about 2/3 of its open space. Large karst conduits and caves account for the remaining 1/3. The degree of karst development in this system depicts evident depth variation but, overall, tends to increase as a function of burial depth.Responsible editor: Xianliang Yi.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []