Sox17 as a candidate regulator of myeloid restricted differentiation potential

2014 
Sry related high mobility group box 17 (Sox17), which is a marker of endodermal cells and a transcriptional regulator, has a critical role in the maintenance of fetal and neonatal hematopoietic stem cells (HSC). Sox17 has been identified as a key regulator of the development and differentiation of fetal hematopoietic progenitors from the aorta-gonad-mesonephros (AGM) region. The co-culture of Sox17-transduced hematopoietic progenitor cells (CD45lowc-Kithigh cells) from AGM regions on OP9 stromal cells gives rise to multipotential hematopoietic stem/progenitor cells. Here, we show that in a primary transplantation experiment, Sox17-transduction in CD45lowc-Kithigh cells of embryonic day (E) 10.5 AGM increased the absolute number of common myeloid progenitors (CMPs) in the bone marrow (BM) of recipient mice in comparison to that of granulocyte/macrophage progenitors (GMPs) and the megakaryocyte/erythroid progenitors (MEPs). When Sox17-transduced cells were cultured with OP9 stromal cells, Sox17-transduced GMPs (Sox17-GMPs), Sox17-transduced CMPs (Sox17-CMPs), and Sox17-transduced MEPs (Sox17-MEPs) were generated. Sox17-GMPs and Sox17-CMPs maintained their self-renewal capacity and the hematopoietic ability upon co-culture with the OP9 stromal cells for some passages. Moreover, Sox17-GMPs exhibited the increase in expression of c-Mpl and GATA-2 in comparison to GMPs of BM and Sox17-CMPs showed the increase in expression of c-Mpl, NF-E2, and β-globin genes in comparison to CMPs of BM. Furthermore, when Sox17-transduced cells were cultured in methylcellulose to examine the colony-forming ability, Sox17-GMPs and Sox17-CMPs maintained the formation of mixed colonies for some passages. Taken together, Sox17 is suggested to regulate the maintenance and differentiation of hematopoietic progenitors derived from AGM regions at midgestation, in particular myeloid progenitors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    3
    Citations
    NaN
    KQI
    []