Contribution of T cells to the development of autoimmune diabetes in the NOD mouse model

1998 
: The nonobese diabetic (NOD) mouse spontaneously develops an autoimmune diabetes that shares many immunogenetic features with human insulin-dependent diabetes mellitus (IDDM), type 1 diabetes. The mononuclear cell infiltrates in the islet, which results in the development of insulitis (a prerequisite step for the development of diabetes) are primarily composed of T cells. It is now well accepted that these T cells play important roles in initiating and propagating an autoimmune process, which in turn destroys insulin-producing islet beta cells in the pancreas. T cells are subdivided into CD4+ helper T cells and CD8+ cytotoxic T cells. CD4+ T cells are further subdivided into Th1 and Th2 cells based on profiles of cytokine production, and these two T-cell populations counterregulate each other. Because many autoimmune diseases are Th1 T-cell mediated, current studies have focused on manipulating the Th1/Th2 imbalance to suppress the autoimmune process in the NOD model. Furthermore, the incidence of disease is much higher in females than that in males, suggesting an involvement of sex-steroid hormones in the development of diabetes. Understanding insights of the mechanism of immune-mediated islet cell destruction and the interaction between the immune and the neuroendocrine system may, therefore, provide new therapeutic means of preventing this chronic debilitating disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    30
    Citations
    NaN
    KQI
    []